Neutrokine- α | 1 | AAATTCAGGATAACTCTCCTGAGGGGTGAGCCCAAGCCCTGCCATGTAGTGCACGCAGGAC | 60 | |------------------|---|------------| | 61 | ATCAACAAACACAGATAACAGGAAATGATCCATTCCCTGTGGTCACTTATTCTAAAGGCC | 120 | | 121
1 | CCAACCTTCAAAGTTCAAGTAGTGATATGGATGACTCCACAGAAAGGGAGCAGTCACGCC M D D S T E R E Q S R L | 180
12 | | 181
13 | TTACTTCTTGCCTTAAGAAAAGAGAAATGAAACTGAAGGAGTGTGTTTCCATCCTCC T S C L K K R E E M K L K E C V S I L P CD-I | 240
32 | | 241
33 | CACGGAAGGAAAGCCCCTCTGTCCGATCCTCCAAAGACGGAAAGCTGCTGGCTG | 300
52 | | 301
53 | TGCTGCTGGCACTGCTGTCTTGCTGCCTCACGGTGGTGTCTTTCTACCAGGTGGCCGCCC L L A L L S C C L T V V S F Y Q V A A L | 360
72 | | 361
73 | TGCAAGGGGACCTGGCCAGCCTCCGGGCAGAGCTGCAGGGCCACCACGCGGAGAAGCTGC
Q G D L A S L R A E L Q G H H A E K L P
CD-II | 420
92 | | 421
93 | CAGCAGGAGCAGGAGCCCCCAAGGCCGGCCTGGAGGAAGCTCCAGCTGTCACCGCGGGAC A G A G A P K A G L E E A P A V T A G L CD-III | 480
112 | | 481
113 | TGAAAATCTTTGAACCACCAGCTCCAGGAGAAGGCAACTCCAGTCAGAACAGCAGAAATA K I F E P P A P G E G N S S Q N S R N K | 540
132 | | 541
133 | AGCGTGCCGTTCAGGGTCCAGAAGAAACAGTCACTCAAGACTGCTTGCAACTGATTGCAG
R A V Q G P E E T V T Q D C L <u>Q L I A D</u>
CD-IV | 600
152 | FIG.1A ### Neutrokine- α | 501
153 | ACAGTGAAACACCAACTATACAAAAAGGATCTTACACATTTGTTCCATGGCTTCTCAGCT S E T P T I Q K G S Y T F <u>V P W L L S F</u> CD-V | 660
172 | |------------|---|-------------| | 561
173 | TTAAAAGGGGAAGTGCCCTAGAAGAAAAAGAGAAATATTGGTCAAAGAAACTGGTT K R G S A L E E K E N K I L V K E T G Y CD-VI | 720
192 | | 721
193 | ACTTITITATATATGGTCAGGTTTTATATACTGATAAGACCTACGCCATGGGACATCTAA F F I Y G Q V L Y T D K T Y A M G H L I CD-VII CD-VII | 780
212 | | 781
213 | TTCAGAGGAAGAAGGTCCATGTCTTTGGGGGATGAATTGAGTCTGGTGACTTTGTTTCGAT ORKKVHVFGDELSLVTLFRC CD-VIII # | 840
232 | | 841
233 | GTATTCAAAATATGCCTGAAACACTACCCAATAATTCCTGCTATTCAGCTGGCATTGCAA I Q N M P E T L P N N <u>S C Y S A G</u> I A K CD-VIII CD-IX | 900
252 | | 901
253 | AACTGGAAGAAGGAGATGAACTCCAACTTGCAATACCAAGAGAAAATGCACAAATATCAC
<u>L E E G D E L Q L A I P R</u> E N A Q I S L
CD-X | 960
272 | | 961
273 | TGGATGGAGATGTCACATTTTTTGGTGCATTGAAACTGCTGTGACCTACTTACACCATGT D G D V <u>T F F G A L K L</u> L CD-XI | 1020
285 | | .021 | CTGTAGCTATTTTCCTCCCTTTCTCTGTACCTCTAAGAAGAAAGA | 1080 | | L081 | CCAAAAAAAAAAAAAA 1100 | | FIG.1B -IG.2A FIG.2B | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | 1A GGNTAACTCT CCTGAGGGGT GAGCCAAGCC CTGCCATGTAAAATTCA GGATAACTCT CCTGAGGGGT GAGCCAAGCC CTGCCATGTA .AATTCGGCA NAGNAAACTG GTTACTTTT TATATATGGT CAGGTTTTAT AATTCGGCAC GAGCAAGGCC GGCCTGGAGG AAGCTCCAGC TGTCACCGCG | |--|---| | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | 51 GTGCACGCAG GACATCANCA A. ACACANN NNNCAGGAAA TAATCCATTC GTGCACGCAG GACATCAACA A. ACACAGA TAACAGGAAA TGATCCATTC ATACTGATAA GACCTACGCC ATGGGACATC TAGTTCAGAG GAAGAAGGTC GGACTGAAAA TCTTTGAACC ACCAGCTCCA GGAGAAGGCA ACTCCAGTCA | | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | 101 CCTGTGGTCA CTTATTCTAA AGGCCCCAAC CTTCAAAGTT CAAGTAGTGA CCTGTGGTCA CTTATTCTAA AGGCCCCAAC CTTCAAAGTT CAAGTAGTGA CATGTCTTTG GGGATGAATT GAGTCTGGTG ACTTTGTTTC GATGTATTCA GAACAGCAGA AATAAGCGTG CCGTTCAGGG TCCAGAAGAA ACAGTCACTC | | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | 151 200 TATGGATGAC TCCACAGAAA GGGAGCAGTC ACGCCTTACT TCTTGCCTTA TATGGATGAC TCCACAGAAA GGGAGCAGTC ACGCCTTACT TCTTGCCTTA AAATATGCCT GAAACACTAC CCAATAATTC CTGCTATTCA GCTGGCATTG AAGACTGCTT GCAACTGNTT GCAGACAGTG AAACACCAAC TATACAAAAA | | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | 201 250 AGAAAAGAGA AGAAATGAAA CTGNAAGGAG TGTGTTTCCA TCCTCCCACG AGAAAAGAGA AGAAATGAAA CT.GAAGGAG TGTGTTTCCA TCCTCCCACG CAAAACTGGN AGGAAGGAGATGAAC TCCAACTTGC AATACCAGGG GGCTCCCTTC TGNTGCCACA TTTGGGCCAA GGAATGGAGA GATTTCTTCG | | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | 251 300 GAAGGAAAGC CCCTCTNTCC GATCCTCCAA AGACGGAAAG CTGCTGGCTG GAAGGAAAGC CCCTCTGTCC GATCCTCCAA AGACGGAAAG CTGCTGGCTG GAAAATGCAC AATTATCACT GGGATGGAGA TGTTCACATT TTTTGGGTGC TCTGGAAACA TTTTGCCAAA CTCTTCAGAT ACTCTTTNCT CTCTGGGAAT | | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | | | HSOAD55R
HNEDU15X
HSLAH84R
HLTBM08R | TACCAGGTGG CCGCCCTGCA AGGGGACCTG GCCAGCCTCC GGGCAGAGCT
CTNCCTNTTC TNTGGTAACC TCTTAGGAAG GAAGGATTCT TAACTGGGAA | FIG.4A | | 401 450 | |----------------------|---| | HS0AD55R | 401 | | HNEDU15X | GCAGGGCCAC CACGCGGAGA AGCTGCCAGC AGGAGCAGGA GCCCCCAAGG | | HSLAH84R
HLTBM08R | ATAACCCAAA AAAANNTTAA ANGGGTANGN GNNANANGNG GGGNNGTTNN CAAGGNACTG GTTANTTTNT AAATATGGTC AGGTTTNTAT ANCTGGTAGG | | TILLIDITOOK | F00 | | HSOAD55R | 451 500 | | HNEDU15X | CCGGCCTGGA GGAAGCTCCA GCTGTCACCG CGGGACTGAA AATCTTTGAA | | HSLAH84R | CNNGNNGNNT TITNGGNNTA TNTTNTNNTN GGGNNNNGTA AAAATGGGGC CCTCGCCATG GGCATTNATT CANGGNGAGG NCNNTCTTTT GGGNTGA | | HLTBM08R | CCICGCCATG GGCATTNATE CANGGINGAGG NCNNTCTTT GGGNTGATT | | | 501 550 | | HSOAD55R
HNEDU15X | CCACCAGCTC CAGGAGAAGG CAACTCCAGT CAGAACAGCA GAAATAAGCG | | HSLAH84R | CNANGGGGGN TTTTT | | HLTBM08R | | | | 551 600 | | HSOAD55R
HNEDU15X | TGCCGTTCAG GGTCCAGAAG AAACAGTCAC TCAAGACTGC TTGCAACTGA | | HSLAH84R | | | HLTBM08R | | | | 601 650 | | HS0AD55R | TTGCAGACAG TGAAACACCA ACTATACAAA AAGGATCTTA CACATTTGTT | | HNEDU15X
HSLAH84R | TIGCAGACAG TGAAACACCA ACTATACAAA AAGGATOTTA OTOTTTTGT | | HLTBM08R | | | | 651 700 | | HSOAD55R | ALCOCAL ALCOCAL ALCOCALCE COCALCA ALALACACA | | HNEDU15X
HSLAH84R | CCATGGCTTC TCAGCIIIAA AAGGGGAAGI GCCCIAGAAG AAAAAGAGAA | | HLTBM08R | ********* | | | 701 750 | | HSOAD55R | | | HNEDU15X
HSLAH84R | TAAAATATTG GTCAAAGAAA CTGGTTACTT TTTTATATAT GGTCAGGTTT | | HLTBM08R | | | | 751 800 | | HSOAD55R | 7.51 | | HNEDU15X | TATATACTGA TAAGACCTAC GCCATGGGAC ATCTAATTCA GAGGAAGAAG | | HSLAH84R
HLTBM08R | | | HEIDINOR | | FIG.4B | | 801 | 50 | |----------------------------------|--|---------| | HSOAD55R
HNEDU15X
HSLAH84R | GTCCATGTCT TTGGGGATGA ATTGAGTCTG GTGACTTTGT TTCGATGT | AT | | HLTBM08R | | • • | | | 851 | 900 | | HSOAD55R
HNEDU15X | TCAAAATATG CCTGAAACAC TACCCAATAA TTCCTGCTAT TCAGCTGC |
GCA | | HSLAH84R | ********* ******* ******** ******* ***** | | | HLTBM08R | | • • • | | | 901 | 950 | | HSOAD55R
HNEDU15X | TTGCAAAACT GGAAGAAGGA GATGAACTCC AACTTGCAAT ACCAAGA | GAA | | HSLAH84R | | | | HLTBM08R | | • • • | | | 951 | 000 | | HSOAD55R | AATGCACAAA TATCACTGGA TGGAGATGTC ACATTTTTTG GTGCATT | GAA | | HNEDU15X
HSLAH84R | | | | HLTBM08R | | • • • | | | 1001 | .050 | | HSOAD55R | ACTGCTGTGA CCTACTTACA CCATGTCTGT AGCTATTTTC CTCCCTT | TCT | | HNEDU15X
HSLAH84R | • • • • | | | HLTBM08R | | | | | 1051 | 1100 | | HSOAD55R | TO THE TAXABLE PROPERTY OF THE | | | HNEDU15X
HSLAH84R | • | | | HLTBM08R | • | | | | 1101 | | | HSOAD55R | · | | | HNEDU15X | | | | HSLAH84R
HLTBM08R | | | FIG.4C ## Neutrokine-∝SV | 1
1 | ATGGATGACTCCACAGAAAGGGAGCAGTCACGCCTTACTTCTTGCCTTAAGAAAAGAGAA M D D S T E R E Q S R L T S C L K K R E | 60
20 | |-----------------|---|------------| | 61
21 | GAAATGAAACTGAAGGAGTGTGTTTCCATCCTCCCACGGAAGGAA | 120
40 | | l21
41 | TCCTCCAAAGACGGAAAGCTGCTGGCTGCAACCTTGCTGCTGCACTGTCTTGCTGC S S K D G K L L A A T L L L A L L S C C CD-I | 180
60 | | 181
61 | CTCACGGTGGTCTTTCTACCAGGTGGCCGCCCTGCAAGGGGACCTGGCCAGCCTCCGG
L T V V S F Y Q V A A L Q G D L A S L R
CD-II | 240
80 | | 241
81 | GCAGAGCTGCAGGGCCACCACGCGGAGAAGCTGCCAGCAGGAGCAGGAGCCCCCAAGGCC A E L Q G H H A E K L P A G A G A P K A CD-II | 300
100 | | 301
101
C | GGCCTGGAGGAAGCTCCAGCTGTCACCGCGGGACTGAAAATCTTTGAACCACCAGCTCCA
G L E E A P A V T A G L K I F E P P A P
D-III | 360
120 | | 361
121 | # GGAGAAGGCAACTCCAGTCAGAACAGCAGAAATAAGCGTGCCGTTCAGGGTCCAGAAGAA G E G N S S Q N S R N K R A V Q G P E E | 420
140 | | 421
141 | ACAGGATCTTACACATTTGTTCCATGGCTTCTCAGCTTTAAAAGGGGAAGTGCCCTAGAA
T G S Y T F <u>V P W L L S F K R G S A L E</u>
CD-IV | 480
160 | | | GAAAAAGAGAATAAAATATTGGTCAAAGAAACTGGTTACTTTTTATATATGGTCAGGTT <u>E K</u> E N K <u>I L V K E T G Y F F I Y G Q V</u> CD-IV | 540
180 | | 541
181 | TTATATACTGATAAGACCTACGCCATGGGACATCTAATTCAGAGGAAGAAGGTCCATGTC L Y T D K T Y A M G H L I Q R K K V H V CD-VI CD-VII | 600
200 | FIG.5A # Neutrokine-αSV | 501
201
CI | TTTGGGGATGAATTGAGTCTGGTGACTTTGTTTCGATGTATTCAAAATATGCCTGAAACA <u>F G</u> D E L S <u>L V T L F R C I Q N M P</u> E T D-VIII CD-VIII | 660
220 | |------------------|---|------------| | 561
221 | CTACCCAATAATTCCTGCTATTCAGCTGGCATTGCAAAACTGGAAGAAGGAGATGAACTC L P N N <u>S C Y S A G</u> I A K <u>L E E G D E L</u> CD-IX CD-X | 720
240 | | 721
241 | CAACTTGCAATACCAAGAGAAAATGCACAAATATCACTGGATGGA | 780
260 | | 781
261 | GGTGCATTGAAACTGCTGTGACCTACTTACACCATGTCTGTAGCTATTTTCCTCCCTTTC G A L K L L CD-XI | 840
266 | | 841 | TCTGTACCTCTAAGAAGAAACAAACTCTAACTGAAAAATACCAAAAAAAA | 900 | | 901 | AAA 903 | | FIG.5B 41 SVRS Ω. RLTSCLKKREEMKLKECVSILPRK S Veutrokine-Alpha M D D S T E | 82 | 123 | 164
134
102
76 | 200
170
139
114 | 237
201
176
155 | |------------------------------------|---------------|---------------------------------|---|--------------------------| | LL | 9 | 1 | | | | A | LLL | > > ' | 2 2 2 2 | | | 8 | G | S C ' | 0000 | ZSZ | | | ο. | G N | αννν | E A H C | | S A | ЬA | Y Q . '. | | 66 8 8 | | | <u> </u> | Z Z S | | шек | | _ | لبا | ⊢ ⊻ 5 Z | | | | G | LL. | д S П О | >> H | | | O | 1 | \blacksquare | നംനംനംന | | | | \preceq | SAA | N A A | > m x x | | ⋖ | | o z 🔤 🖺 | E
S
T | 1 1 0 F F | | ¥ | 9 | | X O B B | | | > | ∀ . | | | u joj v joj | | \
\
} | _ ∧ | | | 0 0 > 0 C | | <u></u> | A | | SGKB | S A G | | S | ۵. | AAMMA | | | | > | ¥ | OBBA | по | > · ~ | | Transmembrane Region
LALLSCCLTV | لينا | OSPE | \times α · · | # · & & /: | | <u>'</u> [द्व | ш | OIZZ | M A O M | | | æ – | | | , шожо | | | ပ | 9 | > | M | | | C la | ¥ | r r r | S R S F
R G A S | | | emb
L S | ᄍ | E E Apri
Apri
TNF
LT α | CHO CHO | H > - > | | | ⋖ | <u> </u> | | | | A A | G | | 1 X X A Q | OEL | | 티그 | ¥ | ď | ↓ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | ကာမာ ⊢ ∽ | | | G. | > | · · 1 L | N N | | | ¥ | ∢ | | | | F | ۵. | 8 | , , Z X | 4 | | ⋖ | _1 | × | - ' A | · · · 🔀 | | ∀. | × | ≥ | N A N N | , , <u>-</u> - \ | | | A
E | S | A P A | | | | / H | 2
2 | | 7 U V | | <u> </u> | ェ | ō | 3333 | 2 > O E | |)
 | 5 | S | PEOJ | ட பெ ம ம | | \checkmark | 0 | S | | ⊢ o × s | | S | | Z | ш. ш · · | | | | | | | | FIG.11A FIG. 11C FIG. 11D FIG. 11E FIG. 11F